泊松自助法(Poisson Bootstrap Sampling):大型数据集上的自助抽样
自助抽样可以根据收集的样本推断总体的统计特征(如均值、十分位数、置信区间)。泊松自助抽样(Poisson Bootstrap Sampling)是一种用于统计分析中的重采样技术,特别是在机器学习和数据科学中用于模型评估和误差估计。这种方法的一个特点是保留了样本中数据点出现的自然波动,而不是像传统的自助法那样平均采样,因此在某些特定应用中更为准确。
为了深入研究泊松自助法,我们首先来介绍经典的自助抽样方法
https://avoid.overfit.cn/post/16008a81feee494d98064f491d2586fe