精简模型,提升效能:线性回归中的特征选择技巧

在本文中,我们将探讨各种特征选择方法和技术,用以在保持模型评分可接受的情况下减少特征数量。通过减少噪声和冗余信息,模型可以更快地处理,并减少复杂性。

我们将使用所有特征作为基础模型。然后将执行各种特征选择技术,以确定保留和删除的最佳特征,同时不显著牺牲评分(R2 分数)。使用的方法包括:

  • 相关性矩阵
  • 检查方差膨胀因子(VIF)
  • Lasso作为特征选择方法
  • Select K-Best(f_regression 和 mutual_info_regression)
  • 递归特征消除(RFE)
  • 顺序前向/后向特征选择

 

https://avoid.overfit.cn/post/193a9516b36c48a7987766746ef20e8f

posted @   deephub  阅读(47)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
历史上的今天:
2023-07-26 2023年发布的25个开源大型语言模型总结
2022-07-26 使用三重损失和孪生神经网络训练大型类目的嵌入表示
点击右上角即可分享
微信分享提示