注意力机制中三种掩码技术详解和Pytorch实现

注意力机制是许多最先进神经网络架构的基本组成部分,比如Transformer模型。注意力机制中的一个关键方面是掩码,它有助于控制信息流,并确保模型适当地处理序列。

在这篇文章中,我们将探索在注意力机制中使用的各种类型的掩码,并在PyTorch中实现它们。

在神经网络中,掩码是一种用于阻止模型使用输入数据中的某些部分的技术。这在序列模型中尤其重要,因为序列的长度可能会有所不同,且输入的某些部分可能无关紧要(例如,填充符)或需要被隐藏(例如,语言建模中的未来内容)。

https://avoid.overfit.cn/post/2371a9ec5eca46af81dbe23d3442a383

posted @   deephub  阅读(88)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
历史上的今天:
2023-07-16 使用CatBoost和SHAP进行多分类完整代码示例
2022-07-16 无监督学习的12个最重要的算法介绍及其用例总结
点击右上角即可分享
微信分享提示