持续学习中避免灾难性遗忘的Elastic Weight Consolidation Loss数学原理及代码实现
训练人工神经网络最重要的挑战之一是灾难性遗忘。神经网络的灾难性遗忘(catastrophic forgetting)是指在神经网络学习新任务时,可能会忘记之前学习的任务。这种现象特别常见于传统的反向传播算法和深度学习模型中。主要原因是网络在学习新数据时,会调整权重以适应新任务,这可能会导致之前学到的知识被覆盖或忘记,尤其是当新任务与旧任务有重叠时。
在本文中,我们将探讨一种方法来解决这个问题,称为Elastic Weight Consolidation。EWC提供了一种很有前途的方法来减轻灾难性遗忘,使神经网络在获得新技能的同时保留先前学习任务的知识。
在任务a和任务B的灰色和黄色区域中,存在许多具有期望的低误差的最优参数配置。假设我们为任务A找到了一个这样的配置θꭺ*,当继续从这样的配置训练模型到新的任务B时,会出现三种不同的场景:
https://avoid.overfit.cn/post/56aee34117764e89a1a707c316fa305f
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
2023-07-13 注意力机制中的掩码详解
2022-07-13 两个简单的代码片段让你的图表动起来