Lookback Lens:用注意力图检测和减轻llm的幻觉

在总结文章或回答给定段落的问题时,大语言模型可能会产生幻觉,并会根据给定的上下文回答不准确或未经证实的细节,这也被称为情境幻觉。为了解决这个问题,这篇论文的作者提出了一个简单的幻觉检测模型,其输入特征由上下文的注意力权重与新生成的令牌(每个注意头)的比例给出。它被称为回看或基于回看比率的检测器。

该方法计算为给定上下文的注意力权重与新生成的令牌的比值。在每个时间步,计算每个注意头的回看率,并训练一个线性分类器,称之为Lookback Lens,根据回看率特征检测上下文幻觉,如下图所示

在解码过程中可以进一步整合该检测器,获得可减少幻觉的回看透镜引导解码策略

 

https://avoid.overfit.cn/post/0c18bed0b5b0466984c2ff8ec5a70283

posted @   deephub  阅读(19)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
历史上的今天:
2022-07-12 基于LSTM-CNN的人体活动识别
点击右上角即可分享
微信分享提示