goldfish loss:减少训练数据泄漏,提高大语言模型输出的多样性

LLMs(大型语言模型)能够记忆并重复它们的训练数据,这可能会带来隐私和版权风险。为了减轻记忆现象,论文作者引入了一种名为"goldfish loss"的微妙修改,在训练过程中,随机抽样的一部分标记被排除在损失计算之外。这些被舍弃的标记不会被模型记忆,从而防止模型完整复制训练集中的一整个标记序列。

论文行了广泛的实验,训练了十亿规模的 Llama-2 模型,包括预训练模型和从头开始训练的模型,并展示出在几乎不影响下游基准测试的情况下,可显著减少记忆现象。

 

https://avoid.overfit.cn/post/d24d133b5c9e4b109f990783a1661c16

posted @ 2024-06-19 10:50  deephub  阅读(10)  评论(0编辑  收藏  举报