Tiny Time Mixers (TTM)轻量级时间序列基础模型:无需注意力机制,并且在零样本预测方面表现出色
大语言模型的发展让研究人员专注于建立尽可能大的模型。但是其实较小的模型在某些任务中表现会优于较大的模型时,例如:Llama 3-8B在MMLU任务上的表现优于较大的Llama 2-70B !
这就说明大模型并不是万能的,在一些特定任务中,小模型表现得可能会更出色。所以IBM的研究人员就推出了一个轻量级模型Tiny Time Mixers[1],并且在M4数据集上优于大型SOTA模型(包括MOIRAI),并且它还是开源的!
https://avoid.overfit.cn/post/d7c8ea6e69e94a39930241a7c17059b7
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· .NET10 - 预览版1新功能体验(一)
2023-06-11 时间序列预测的20个基本概念总结
2022-06-11 使用贝叶斯优化进行深度神经网络超参数优化