YOLOv10的改进、部署和微调训练总结
YOLO模型因其在计算成本和检测性能之间的平衡而在实时目标检测中很受欢迎。前几天YOLOv10也刚刚发布了。我们这篇文章就来看看YOLOv10有哪些改进,如何部署,以及微调。
YOLOv10通过无nms的训练解决了延迟问题,作者为无nms训练引入了一致的双任务,同时获得了具有竞争力的性能和低推理延迟。他们还提出了一种整体的效率-精度驱动模型设计策略,从效率和精度两个角度对各种YOLO组件进行优化。这减少了计算开销并提高了性能。
通过以上一些列的优化YOLOv10具有最先进的性能和效率。例如,YOLOv10-S比RT-DETR-R18快1.8倍,精度相似但参数和FLOPs更少。与YOLOv9-C相比,在相同性能下,YOLOv10-B的延迟减少了46%,参数减少了25%。
https://avoid.overfit.cn/post/ef635b20337c435abde2ac2d1577d665