通过强化学习策略进行特征选择
特征选择是构建机器学习模型过程中的决定性步骤。为模型和我们想要完成的任务选择好的特征,可以提高性能。
如果我们处理的是高维数据集,那么选择特征就显得尤为重要。它使模型能够更快更好地学习。我们的想法是找到最优数量的特征和最有意义的特征。
在本文中,我们将介绍并实现一种新的通过强化学习策略的特征选择。我们先讨论强化学习,尤其是马尔可夫决策过程。它是数据科学领域的一种非常新的方法,尤其适用于特征选择。然后介绍它的实现以及如何安装和使用python库(FSRLearning)。最后再使用一个简单的示例来演示这一过程。
https://avoid.overfit.cn/post/a1b42bed18ea4e8ea25543c73cbecf8c