DeepSparse: 通过剪枝和稀疏预训练,在不损失精度的情况下减少70%的模型大小,提升三倍速度
这篇论文提出了一种高稀疏性基础大型语言模型(LLMs)的新方法,通过有效的预训练和部署,实现了模型在保持高准确度的同时,显著提升了处理速度。
https://avoid.overfit.cn/post/06961c02a12b48a6a3e1436b527fd2b7
这篇论文提出了一种高稀疏性基础大型语言模型(LLMs)的新方法,通过有效的预训练和部署,实现了模型在保持高准确度的同时,显著提升了处理速度。
https://avoid.overfit.cn/post/06961c02a12b48a6a3e1436b527fd2b7
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】凌霞软件回馈社区,博客园 & 1Panel & Halo 联合会员上线
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】博客园社区专享云产品让利特惠,阿里云新客6.5折上折
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步