DeepSparse: 通过剪枝和稀疏预训练,在不损失精度的情况下减少70%的模型大小,提升三倍速度

这篇论文提出了一种高稀疏性基础大型语言模型(LLMs)的新方法,通过有效的预训练和部署,实现了模型在保持高准确度的同时,显著提升了处理速度。

https://avoid.overfit.cn/post/06961c02a12b48a6a3e1436b527fd2b7

posted @   deephub  阅读(43)  评论(0编辑  收藏  举报
编辑推荐:
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
· 没有源码,如何修改代码逻辑?
阅读排行:
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
历史上的今天:
2023-05-19 使用大语言模型集成工具 LangChain 创建自己的论文汇总和查询工具
2022-05-19 5篇关于3D 卷积的最新论文推荐
点击右上角即可分享
微信分享提示