图神经网络入门示例:使用PyTorch Geometric 进行节点分类
基于图的神经网络是强大的模型,可以学习网络中的复杂模式。在本文中,我们将介绍如何为同构图数据构造PyTorch Data对象,然后训练不同类型的神经网络来预测节点所属的类。这种类型的预测问题通常被称为节点分类。
我们将使用来自Benedek Rozemberczki, Carl Allen和Rik Sarkar于2019年发布的“Multi-scale Attributed Node Embedding”论文中的Facebook Large Page-Page Network¹数据集。
该数据集包含22,470个Facebook页面,按主题分为四类。由不同大小的特征向量表示。数据集还包含Facebook pages 上跟随其他page的信息。网络中有171,992个链接或边。
https://avoid.overfit.cn/post/885ad3f5eb424045b02408699c45e340
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
2023-05-17 Github Copilot Chat的规则泄露,详细分析这31条规则
2022-05-17 多目标追踪小抄:快速了解MOT的基本概念