循环编码:时间序列中周期性特征的一种常用编码方式
在深度学习或神经网络中,"循环编码"(Cyclical Encoding)是一种编码技术,其特点是能够捕捉输入或特征中的周期性或循环模式。这种编码方法常用于处理具有周期性行为的任务,比如时间序列预测或理解展示周期性特征的序列。
循环编码的核心思想是将数据的周期性特征转化为网络能够理解的形式。例如,在处理时间数据时,比如小时、日、月等的循环模式,可以使用循环编码来帮助模型识别和利用这些周期性的变化。
当涉及到训练时间序列模型时,通常会使用以下时间特征:
https://avoid.overfit.cn/post/99a2cd8d7acb46afa36ead49b53b2dd1
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
2023-05-07 UNeXt:基于 MLP 的快速医学图像分割网络
2022-05-07 Pycaret 3.0的RC版本已经发布了,什么重大的改进呢?