LLM2Vec介绍和将Llama 3转换为嵌入模型代码示例

嵌入模型是大型语言模型检索增强生成(RAG)的关键组成部分。它们对知识库和用户编写的查询进行编码。

使用与LLM相同领域的训练或微调的嵌入模型可以显著改进RAG系统。然而,寻找或训练这样的嵌入模型往往是一项困难的任务,因为领域内的数据通常是稀缺的。

但是这篇论文LLM2Vec,可以将任何的LLM转换为文本嵌入模型,这样我们就可以直接使用现有的大语言模型的信息进行RAG了。

https://avoid.overfit.cn/post/67a62b9532b247cc9db87663ce547ff2

posted @   deephub  阅读(69)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
历史上的今天:
2023-05-05 交互式数据分析和处理新方法:pandas-ai =Pandas + ChatGPT
2022-05-05 5分钟NLP:文本分类任务中的数据增强技术
点击右上角即可分享
微信分享提示