Chronos: 将时间序列作为一种语言进行学习

这是一篇非常有意思的论文,它将时间序列分块并作为语言模型中的一个token来进行学习,并且得到了很好的效果。

Chronos是一个对时间序列数据的概率模型进行预训练的框架,它将这些值标记为与基于transformer的模型(如T5)一起使用。模型将序列的值缩放和量化到一个固定的词汇表,并在通过高斯过程创建的公共和合成数据集上进行训练。Chronos模型的参数范围从20M到710M不等,在已知数据集上优于传统和深度学习模型,在新数据集上表现出具有竞争力的零样本性能。

 

https://avoid.overfit.cn/post/3d2f93d490b5417d9e10ae3fad935c18

posted @   deephub  阅读(98)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
历史上的今天:
2023-03-27 高斯混合模型 GMM 的详细解释
2022-03-27 7种不同的数据标准化(归一化)方法总结
2020-03-27 从零开始构建:使用CNN和TensorFlow进行人脸特征检测
点击右上角即可分享
微信分享提示