Lag-Llama:第一个时间序列预测的开源基础模型介绍和性能测试

2023年10月,我们发表了一篇关于TimeGPT的文章,TimeGPT是时间序列预测的第一个基础模型之一,具有零样本推理、异常检测和共形预测能力。

虽然TimeGPT是一个专有模型,只能通过API访问。但是它还是引发了对时间序列基础模型的更多研究。到了2024年2月,已经有了一个用于时间序列预测的开源基础模型:laglllama。

在原论文《Lag-Llama: Towards Foundation Models for Probabilistic Time Series Forecasting》中,模型作为单变量概率预测的通用基础模型提出。它是由来自不同机构的大型团队开发的,这些机构包括Morgan Stanley, ServiceNow, Université de Montréal, Mila-Quebec, 和McGill University.

在本文中,我们将探讨Lag-Llama的架构、功能以及训练方式。还会将lagllama应用于一个预测项目中,并将其与其他深度学习方法Temporal Fusion Transformer (TFT) 和DeepAR进行性能比较。

https://avoid.overfit.cn/post/8a9120d3cf074c1ba0de0a7a247993c9

posted @   deephub  阅读(148)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· .NET10 - 预览版1新功能体验(一)
历史上的今天:
2023-02-15 100行Pytorch代码实现三维重建技术神经辐射场 (NeRF)
2022-02-15 特征工程:常用的特征转换方法总结
点击右上角即可分享
微信分享提示