UniMS-RAG:用于个性化对话的统一多源RAG框架

RAG领域已经取得了相当大的发展,这篇论文的是如何分解RAG过程,加入多文件检索、记忆和个人信息等定制化的元素。

大型语言模型(llm)在自然语言任务中表现出色,但在对话系统中的个性化和上下文方面面临挑战。这个研究提出了一个统一的多源检索-增强生成系统(UniMS-RAG),通过将任务分解为知识来源选择、知识检索和响应生成来解决个性化问题。

这个系统包括一个自我改进的机制,这个机制基于响应和检索证据之间的一致性分数迭代地改进生成的响应。实验结果表明,UniMS-RAG在知识来源选择和响应生成任务方面具有先进的性能。

上图展示了两个场景,其中用户和机器人角色是独立的,而在第二个示例中则是相互依赖的。对于相互依赖的方法,需要有评估令牌和代理令牌。

 

https://avoid.overfit.cn/post/93a42fde82df483d8d64e286eb3a726a

posted @   deephub  阅读(66)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· .NET10 - 预览版1新功能体验(一)
历史上的今天:
2023-02-01 在 PyTorch 中使用梯度检查点在GPU 上训练更大的模型
点击右上角即可分享
微信分享提示