4种SVM主要核函数及相关参数的比较

本文将用数据可视化的方法解释4种支持向量机核函数和参数的区别

简单地说,支持向量机(SVM)是一种用于分类的监督机器学习技术。它的工作原理是计算一个最好地分隔类的最大边距的超平面。

支持向量机除了提供简单的线性分离之外,还可以通过应用不同的核方法进行非线性分类。参数设置也是SVM更好地工作的另一个重要因素。通过适当的选择,我们可以使用支持向量机来处理高维数据。

本文旨将使用Scikit-learn库来展示每个核函数以及如何使用不同的参数设置。并且通过数据可视化进行解释和比较。

 

https://avoid.overfit.cn/post/96c405b7aecf40c5a324ac8a2718f019

posted @   deephub  阅读(65)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· .NET10 - 预览版1新功能体验(一)
历史上的今天:
2023-01-05 从视频到音频:使用VIT进行音频分类
2022-01-05 数据变异性的度量 - 极差、IQR、方差和标准偏差
点击右上角即可分享
微信分享提示