高维向量压缩方法IVFPQ :通过创建索引加速矢量搜索

向量相似性搜索是从特定嵌入空间中的给定向量列表中找到相似的向量。它能有效地从大型数据集中检索相关信息,在各个领域和应用中发挥着至关重要的作用。

向量相似性搜索需要大量的内存资源来实现高效搜索,特别是在处理密集的向量数据集时。而压缩的主要作用是压缩高维向量来优化内存存储。

IVFPQ 是一种用于数据检索的索引方法,它结合了倒排索引(Inverted File)和乘积量化(Product Quantization)的技术。这个方法通常应用在大规模数据检索任务中,特别是在处理非常大的数据数据库时表现出色。

https://avoid.overfit.cn/post/afe4541bc8834b8ea5393d4ab18d1258

posted @   deephub  阅读(94)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· .NET10 - 预览版1新功能体验(一)
历史上的今天:
2022-12-20 计算机视觉面试中一些热门话题整理
2021-12-20 神经网络压缩方法:模型量化的概念简介
点击右上角即可分享
微信分享提示