高斯混合模型:GMM和期望最大化算法的理论和代码实现

高斯混合模型(gmm)是将数据表示为高斯(正态)分布的混合的统计模型。这些模型可用于识别数据集中的组,并捕获数据分布的复杂、多模态结构。

gmm可用于各种机器学习应用,包括聚类、密度估计和模式识别。

在本文中,将首先探讨混合模型,重点是高斯混合模型及其基本原理。然后将研究如何使用一种称为期望最大化(EM)的强大技术来估计这些模型的参数,并提供在Python中从头开始实现它。最后将演示如何使用Scikit-Learn库使用GMM执行聚类。

https://avoid.overfit.cn/post/fbd97f86b7f84b5aa6ca593bf841a278

posted @   deephub  阅读(34)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· .NET10 - 预览版1新功能体验(一)
历史上的今天:
2022-12-02 从头开始进行CUDA编程:原子指令和互斥锁
点击右上角即可分享
微信分享提示