斯坦福大学引入FlashFFTConv来优化机器学习中长序列的FFT卷积
斯坦福大学的FlashFFTConv优化了扩展序列的快速傅里叶变换(FFT)卷积。该方法引入Monarch分解,在FLOP和I/O成本之间取得平衡,提高模型质量和效率。并且优于PyTorch和FlashAttention-v2。它可以处理更长的序列,并在人工智能应用程序中打开新的可能性。
处理长序列的效率一直是机器学习领域的一个挑战。卷积神经网络(cnn)最近作为序列建模的关键工具获得了突出的地位,在从自然语言处理到计算机视觉和遗传学的各个领域都提供了一流的性能。尽管卷积序列模型具有卓越的品质,但在速度方面仍落后于Transformers 。
快速傅里叶变换(FFT)卷积算法,通过在频域内计算输入序列和核之间的卷积,可以解决上面卷积的问题。但是FFT卷积在执行时间方面有非常大的问题。
https://avoid.overfit.cn/post/de29ba25d1c94218b1c9da494b5e58c3
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· .NET10 - 预览版1新功能体验(一)
2022-11-23 从头开始进行CUDA编程:流和事件