使用Llama index构建多代理 RAG
检索增强生成(RAG)已成为增强大型语言模型(LLM)能力的一种强大技术。通过从知识来源中检索相关信息并将其纳入提示,RAG为LLM提供了有用的上下文,以产生基于事实的输出。
但是现有的单代理RAG系统面临着检索效率低下、高延迟和次优提示的挑战。这些问题在限制了真实世界的RAG性能。多代理体系结构提供了一个理想的框架来克服这些挑战并释放RAG的全部潜力。通过划分职责,多代理系统允许专门的角色、并行执行和优化协作。
https://avoid.overfit.cn/post/7f39d14f7e1a47188870b04c0c332641
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· .NET10 - 预览版1新功能体验(一)
2022-10-31 使用上下文装饰器调试Pytorch的内存泄漏问题