9月大型语言模型研究论文总结
大型语言模型(llm)在今年发展迅速,随着新一代模型不断地被开发,研究人员和工程师了解最新进展变得非常重要。本文总结9-10月期间发布了一些重要的LLM论文。
这些论文涵盖了一系列语言模型的主题,从模型优化和缩放到推理、基准测试和增强性能。最后部分讨论了有关安全训练并确保其行为保持有益的论文。
优化与扩展
Large Language Model Cascades with Mixture of Thoughts Representations for Cost-efficient Reasoning
https://arxiv.org/abs/2310.03094
像GPT-4这样的大型语言模型(llm)在各种任务中表现出了卓越的性能,但是这种强大的性能通常伴随着使用付费API服务的高昂费用。
在本文中,作者研究了构建LLM级联以节省使用LLM的成本,特别是用于执行推理(例如,数学,因果关系)任务。
级联管道遵循的理论是,简单的问题可以通过较弱但更实惠的LLM来解决,而只有具有挑战性的问题才需要更强大且更昂贵的LLM。
为了实现这一决策,他们将较弱LLM的“答案一致性”视为问题难度的信号,并提出了几种答案抽样和一致性检查方法,包括一种利用两种思维表示(即Chain-of-Thought 和 Program-of-Thought)的混合方法。
通过在六个推理基准数据集上的实验,分别使用gpt -3.5 turbo和GPT-4作为较弱和较强的LLM,证明提出的LLM级联可以达到与单独使用较强LLM相当的性能,而成本仅为其40%。
https://avoid.overfit.cn/post/fe5635accd16437aa7b4b6d7f2eea43f
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· .NET10 - 预览版1新功能体验(一)
2022-10-15 我们能从后验分布中学到什么?贝叶斯后验的频率解释