TimesNet:时间序列预测的最新模型
2020年发布的N-BEATS、2022年发布的N-HiTS和2023年3月发布的PatchTST开始。N-BEATS和N-HiTS依赖于多层感知器架构,而PatchTST利用了Transformer架构。
2023年4月发表了一个新的模型,它在时间序列分析的多个任务中实现了最先进的结果,如预测、imputation、分类和异常检测:TimesNet。
TimesNet由Wu、Hu、Liu等人在他们的论文《TimesNet: Temporal 2D-Variation Modeling For General Time Series Analysis》中提出。
与以前的模型不同,它使用基于cnn的架构来跨不同的任务获得最先进的结果,使其成为时间序列分析的基础模型的绝佳候选。
在本文中,我们将探讨TimesNet的架构和内部工作原理。然后将该模型应用于预测任务,与N-BEATS和N-HiTS进行对比。
TimesNet
TimesNet背后的动机来自于许多现实生活中的时间序列表现出多周期性的认识。这意味着变化发生在不同的时期。
例如,室外温度有日周期和年周期。通常,白天比晚上热,夏天比冬天热。这些多个时期相互重叠和相互作用,使得很难单独分离和建模。
周期内变化是指温度在一天内的变化,周期间变化是指温度每天或每年的变化。所以TimesNet的作者提出在二维空间中重塑序列,以模拟周期内和周期间的变化。
TimesNet的架构
从上图中,我们可以看到TimesNet是多个带有跳过连接的TimesBlock的堆栈。
https://avoid.overfit.cn/post/337d0605c21f49c5bb9c65c46d2142cd
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· .NET10 - 预览版1新功能体验(一)
2022-10-13 数据科学家在使用Python时常犯的9个错误