量化自定义PyTorch模型入门教程
在以前Pytorch只有一种量化的方法,叫做“eager mode qunatization”,在量化我们自定定义模型时经常会产生奇怪的错误,并且很难解决。但是最近,PyTorch发布了一种称为“fx-graph-mode-qunatization”的方方法。在本文中我们将研究这个fx-graph-mode-qunatization”看看它能不能让我们的量化操作更容易,更稳定。
本文将使用CIFAR 10和一个自定义AlexNet模型,我对这个模型进行了小的修改以提高效率,最后就是因为模型和数据集都很小,所以CPU也可以跑起来。
https://avoid.overfit.cn/post/a72a7478c344466581295418f1620f9b