使用LSH 进行特征提取

局部敏感哈希(LSH)通常用于近似最近邻算法(ANN) 操作(向量搜索)。LSH的特性也可以在以矢量为输入的神经网络模型中得到利用(例如,各种的音频、视频和文本嵌入等内容信号)。

通常情况下,特定领域模型中输入的流形是复杂的(非i. i. d)。这种复杂性使得使用计算密集型操作的多层感知机来分离这些流形非常困难。学习复杂映射的经典方案是记忆结果,而不是学习函数。如何记忆向量图?最直接的方法就是嵌入向量。但是我们需要离散的对象来计算嵌入,而向量不是离散的。那么怎么把向量嵌入算法应用到向量输入中呢?对向量进行哈希运算,在哈希运算后,附近的点必须保持“附近”状态。这就是LSH的做法,所以我LSH运算顶部的嵌入可以作为浅层特征提取器。

"局部敏感哈希"(Locality Sensitive Hashing,简称LSH)是一种用于解决这类问题的近似搜索技术。它的主要思想是将相似的数据点映射到同一个"哈希"桶中,从而可以在特定的桶中进行搜索,而不必对整个数据集进行线性搜索。虽然这种方法不保证找到确切的最近邻,但它在高维数据中提供了一种高效的近似搜索方法。

 

https://avoid.overfit.cn/post/2bab364a679f4b6f8d9a1c0bd3096b9b

posted @ 2023-08-13 10:16  deephub  阅读(29)  评论(0编辑  收藏  举报