基于时态差分法的强化学习:Sarsa和Q-learning
时态差分法(Temporal Difference, TD)是一类在强化学习中广泛应用的算法,用于学习价值函数或策略。Sarsa和Q-learning都是基于时态差分法的重要算法,用于解决马尔可夫决策过程(Markov Decision Process, MDP)中的强化学习问题。
下面是最简单的TD方法更新:
它只使用当前行动之后的奖励值和下一个状态的值作为目标。Sarsa(State-Action-Reward-State-Action)和Q-learning是都是基于时态差分法的强化学习方法。
Sarsa和Q-learning的区别
Sarsa代表State-Action-Reward-State-Action。是一种基于策略的方法,即使用正在学习的策略来生成训练数据。Q-learning是一种非策略方法它使用不同的策略为正在学习的值函数的策略生成训练数据。
https://avoid.overfit.cn/post/b7ecfa32ef354a4e9e0c9e2e5da7376d
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· .NET10 - 预览版1新功能体验(一)
2022-08-12 CVPR 2022上人脸识别相关的论文分类整理