因子分解机介绍和PyTorch代码实现
因子分解机(Factorization Machines,简称FM)是一种用于解决推荐系统、回归和分类等机器学习任务的模型。它由Steffen Rendle于2010年提出,是一种基于线性模型的扩展方法,能够有效地处理高维稀疏数据,并且在处理特征组合时表现出色。它是推荐系统的经典模型之一,并且模型简单、可解释性强,所以搜索广告与推荐算法领域还在被使用。今天我们来详细介绍它并使用Pytorch代码进行简单的实现。
我们这里使用一个用户、电影和评分的数据集,现在需要通过因子分解机进行电影的推荐。数据特征包括:电影、评级、时间戳、标题和类型。用户特征包括:年龄、性别、职业、邮政编码。数据集中没有分级的电影将被删除。
https://avoid.overfit.cn/post/57c0d06f61ed4b67b9487750e8d2d211
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· .NET10 - 预览版1新功能体验(一)
2022-07-30 30 个数据工程必备的Python 包