使用Cleanlab、PCA和Procrustes可视化ViT微调
与传统的卷积神经网络不同,vit使用最初设计用于自然语言处理任务的Transformers 架构来处理图像。微调这些模型以获得最佳性能可能是一个复杂的过程。
下面是使用动画演示了在微调过程中嵌入的变化。这是通过对嵌入执行主成分分析(PCA)来实现的。这些嵌入是从处于不同微调阶段的模型及其相应的检查点生成的。
在本文中,我们将介绍如何创建这样一个动画,主要包括:微调、创建嵌入、异常值检测、PCA、Procrustes、创建动画。
https://avoid.overfit.cn/post/96c2cedd55204af687ea63cfee149dd0
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· .NET10 - 预览版1新功能体验(一)
2022-07-21 使用python手写Metropolis-Hastings算法的贝叶斯线性回归