LeViT-UNet:transformer 编码器和CNN解码器的有效整合
levi - unet[2]是一种新的医学图像分割架构,它使用transformer 作为编码器,这使得它能够更有效地学习远程依赖关系。levi - unet[2]比传统的U-Nets更快,同时仍然实现了最先进的分割性能。
levi - unet[2]在几个具有挑战性的医学图像分割基准上取得了比其他法更好的性能,包括Synapse多器官分割数据集(Synapse)和自动心脏诊断挑战数据集(ACDC)。
LeViT-UNet架构
levi - unet的编码器使用LeViT块构建,设计用于高效和有效地学习全局特征。解码器是使用卷积块构建的。
编码器从多个分辨率的输入图像中提取特征映射。这些特征映射被上采样,连接然后通过跳过连接传递到解码器。跳过连接允许解码器从编码器访问高分辨率的局部特征,有助于提高分割性能。
https://avoid.overfit.cn/post/474870d5912d4cb3aeade0b47c1a97e3
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· .NET10 - 预览版1新功能体验(一)
2022-07-04 卷积神经网络在深度学习中新发展的5篇论文推荐