用于语义图像分割的弱监督和半监督学习:弱监督期望最大化方法

这时一篇2015年的论文,但是他却是最早提出在语义分割中使用弱监督和半监督的方法,SAM的火爆证明了弱监督和半监督的学习方法也可以用在分割上。

这篇论文只有图像级标签或边界框标签作为弱/半监督学习的输入。使用期望最大化(EM)方法,用于弱/半监督下的语义分割模型训练。

背景知识

1、符号定义

X是图像。Y是分割映射。其中,ym∈{0,…,L}是位置m∈{1,…,m}处的像素标签,假设我们有背景和L个可能的前景标签,m是像素个数。

2、 有监督学习的流程

 

https://avoid.overfit.cn/post/36b0fbd642d640ceab41d0dfb885a95d

posted @   deephub  阅读(51)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· .NET10 - 预览版1新功能体验(一)
历史上的今天:
2022-06-28 基于趋势和季节性的时间序列预测
点击右上角即可分享
微信分享提示