用于语义图像分割的弱监督和半监督学习:弱监督期望最大化方法

这时一篇2015年的论文,但是他却是最早提出在语义分割中使用弱监督和半监督的方法,SAM的火爆证明了弱监督和半监督的学习方法也可以用在分割上。

这篇论文只有图像级标签或边界框标签作为弱/半监督学习的输入。使用期望最大化(EM)方法,用于弱/半监督下的语义分割模型训练。

背景知识

1、符号定义

X是图像。Y是分割映射。其中,ym∈{0,…,L}是位置m∈{1,…,m}处的像素标签,假设我们有背景和L个可能的前景标签,m是像素个数。

2、 有监督学习的流程

 

https://avoid.overfit.cn/post/36b0fbd642d640ceab41d0dfb885a95d

posted @ 2023-06-28 10:37  deephub  阅读(38)  评论(0编辑  收藏  举报