Video-LLaMa:利用多模态增强对视频内容理解

在数字时代,视频已经成为一种主要的内容形式。但是理解和解释视频内容是一项复杂的任务,不仅需要视觉和听觉信号的整合,还需要处理上下文的时间序列的能力。本文将重点介绍称为video - llama的多模态框架。Video-LLaMA旨在使LLM能够理解视频中的视觉和听觉内容。论文设计了两个分支,即视觉语言分支和音频语言分支,分别将视频帧和音频信号转换为与llm文本输入兼容的查询表示。

video - llama结合了视频中的视觉和听觉内容,可以提高语言模型对视频内容的理解。他们提出了一个视频Q-former来捕捉视觉场景的时间变化,一个音频Q-former来整合视听信号。该模型在大量视频图像标题对和视觉指令调优数据集上进行训练,使视觉和音频编码器的输出与LLM的嵌入空间对齐。作者发现video - llama展示了感知和理解视频内容的能力,并根据视频中呈现的视觉和听觉信息产生有意义的反应。

 
完整文章:
posted @   deephub  阅读(140)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· .NET10 - 预览版1新功能体验(一)
历史上的今天:
2022-06-21 主动学习(Active Learning) 概述、策略和不确定性度量
点击右上角即可分享
微信分享提示