使用PyMC进行时间序列分层建模
在统计建模领域,理解总体趋势的同时解释群体差异的一个强大方法是分层(或多层)建模。这种方法允许参数随组而变化,并捕获组内和组间的变化。在时间序列数据中,这些特定于组的参数可以表示不同组随时间的不同模式。
今天,我们将深入探讨如何使用PyMC(用于概率编程的Python库)构建分层时间序列模型。
让我们从为多个组生成一些人工时间序列数据开始,每个组都有自己的截距和斜率
完整文章:
https://avoid.overfit.cn/post/56ad545325504850ab2b7b7b9a264a61
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· .NET10 - 预览版1新功能体验(一)
2022-06-19 Curriculum Labeling:重新审视半监督学习的伪标签