6月人工智能论文推荐

Prompt Space Optimizing Few-shot Reasoning Success with Large Language Models

https://arxiv.org/abs/2306.03799

Prompt engineering 是通过提供明确和具体的指令来增强大型语言模型(llm)能力的基本技术。它使LLM能够在各种任务中脱颖而出,例如算术推理、问题回答、摘要、关系提取、机器翻译和情感分析。研究人员一直在积极探索不同的提示工程策略,如思维链(CoT)、零样本思维链(Zero-CoT)和情境学习(In-context learning)。但是一个尚未解决的问题是,目前的方法缺乏确定最佳提示的坚实理论基础。为了解决提示工程中的这一问题,论文提出了一种新的、有效的方法——提示空间。

 

https://avoid.overfit.cn/post/b4e61ad1dc414676bcad40bc558c892c

posted @   deephub  阅读(17)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
历史上的今天:
2022-06-18 如何正确拆分数据集?常见的三种方法总结
点击右上角即可分享
微信分享提示