数据偏度介绍和处理方法

偏度(skewness)是用来衡量概率分布或数据集中不对称程度的统计量。它描述了数据分布的尾部(tail)在平均值的哪一侧更重或更长。偏度可以帮助我们了解数据的偏斜性质,即数据相对于平均值的分布情况。

有时,正态分布倾向于向一边倾斜。这是因为数据大于或小于平均值的概率更高,因此使得分布不对称。这也意味着数据不是均匀分布的。

偏度可以与其他描述性统计一起描述变量的分布。通过偏度也可以判断变量是否为正态分布。因为正态分布的偏度为零,是许多统计过程的假设。

完整文章:

https://avoid.overfit.cn/post/357fff159a5f41e68be87e56d6530726

posted @ 2023-05-29 09:33  deephub  阅读(55)  评论(0编辑  收藏  举报