余弦相似度算法进行客户流失分类预测

余弦相似性是一种用于计算两个向量之间相似度的方法,常被用于文本分类和信息检索领域。具体来说,假设有两个向量A和B,它们的余弦相似度可以通过以下公式计算:

其中,dot_product(A, B)表示向量A和B的点积,norm(A)和norm(B)分别表示向量A和B的范数。如果A和B越相似,它们的余弦相似度就越接近1,反之亦然。

 

完整文章:

 

https://avoid.overfit.cn/post/5cd4d22b523c418cb5d716e942a7ed46

posted @   deephub  阅读(15)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· .NET10 - 预览版1新功能体验(一)
历史上的今天:
2022-05-03 Pandas 对数值进行分箱操作的4种方法总结对比
点击右上角即可分享
微信分享提示