参数与非参数检验:理解差异并正确使用

数据科学是一个快速发展的领域,它在很大程度上依赖于统计技术来分析和理解复杂的数据集。这个过程的一个关键部分是假设检验,它有助于确定从样本中获得的结果是否可以推广到总体。

在这篇文章中,我们将探讨参数与非参数检验之间的区别,提供示例以更好地理解它们的用例,并总结关键要点。

理解假设检验

假设检验是一种统计方法,用于确定给定结果是由于偶然或特定影响的可能性。它包括制定一个零假设(H0)和一个备选假设(H1),然后使用统计检验来确定哪一个更有可能。

检验的选择取决于数据的特征、变量的分布和检验的假设。这就是参数和非参数测试发挥作用的地方。

完整文章:

https://avoid.overfit.cn/post/f516ef963cd54d61bc7d702337c69f48

posted @   deephub  阅读(100)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· .NET10 - 预览版1新功能体验(一)
历史上的今天:
2022-04-24 在预测中使用LSTM架构的最新5篇论文推荐
点击右上角即可分享
微信分享提示