Huggingface微调BART的代码示例:WMT16数据集训练新的标记进行翻译
BART模型是用来预训练seq-to-seq模型的降噪自动编码器(autoencoder)。它是一个序列到序列的模型,具有对损坏文本的双向编码器和一个从左到右的自回归解码器,所以它可以完美的执行翻译任务。
如果你想在翻译任务上测试一个新的体系结构,比如在自定义数据集上训练一个新的标记,那么处理起来会很麻烦,所以在本文中,我将介绍添加新标记的预处理步骤,并介绍如何进行模型微调。
因为Huggingface Hub有很多预训练过的模型,可以很容易地找到预训练标记器。但是我们要添加一个标记可能就会有些棘手,下面我们来完整的介绍如何实现它,首先加载和预处理数据集。
完整文章:
https://avoid.overfit.cn/post/6a533780b5d842a28245c81bf46fac63
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 分享4款.NET开源、免费、实用的商城系统
· 全程不用写代码,我用AI程序员写了一个飞机大战
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了
· 上周热点回顾(2.24-3.2)
2022-03-23 特征工程:基于梯度提升的模型的特征编码效果测试
2020-03-23 生物学中的机器学习:使用K-Means和PCA进行基因组序列分析 COVID-19接下来如何突变?