DDPG强化学习的PyTorch代码实现和逐步讲解

深度确定性策略梯度(Deep Deterministic Policy Gradient, DDPG)是受Deep Q-Network启发的无模型、非策略深度强化算法,是基于使用策略梯度的Actor-Critic,本文将使用pytorch对其进行完整的实现和讲解

DDPG的关键组成部分是

  • Replay Buffer
  • Actor-Critic neural network
  • Exploration Noise
  • Target network
  • Soft Target Updates for Target Network

下面我们一个一个来逐步实现:

完整文章:

https://avoid.overfit.cn/post/9951ac196ec84629968ce7168215e461

posted @ 2023-03-22 10:51  deephub  阅读(558)  评论(0编辑  收藏  举报