CLIP:语言-图像表示之间的桥梁

最近GPT4的火爆覆盖了一个新闻:midjourney v5发布,DALLE2,midjourney都可以从文本中生成图像,这种模型要求人工智能同时理解语言和图像数据。

传统的基于人工智能的模型很难同时理解语言和图像。因为自然语言处理和计算机视觉一直被视为两个独立的领域,这使得机器在两者之间进行有效沟通具有挑战性。

然而CLIP的多模态架构通过在相同的潜在空间中学习语言和视觉表现在二者之间建立了桥梁。因此,CLIP允许我们利用其他架构,使用它的“语言-图像表示”进行下游任务。

CLIP是一个基于超大数据量的pair-wise 预训练模型但是在它的下游任务DalleE-2,Stable-Diffusion中,CLIP也是其中打通文本和图像的核心模块,比如开源的SD2就是使用了OpenCLIP来学习二者的表示,因此了解CLIP是深入了解后续扩散模型非常重要的一环,所以我们今天来主要介绍一下CLIP:

Contrastive Language-Image Pre-training (CLIP)利用自然语言描述图像的数据,训练了一个同时对图像和文本具有深度理解能力的神经网络模型。通过使用自然语言作为监督信号,CLIP 可以自然地跨越多个视觉和语言数据集,且具有较强的可迁移性。CLIP 可以与最先进的视觉和语言模型相媲美,且可以在多个视觉和语言任务上进行零样本学习。

 

 

完整文章:

https://avoid.overfit.cn/post/497e7334429f421394dac28bdefe18b3

 

posted @   deephub  阅读(160)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· .NET10 - 预览版1新功能体验(一)
历史上的今天:
2022-03-18 模型的可解释性:部分依赖图PDP和个体条件期望图ICE
2020-03-18 你不会成为数据科学家的9个原因:数据科学是一个艰难的领域,请做好准备
2020-03-18 深度学习中的激活函数完全指南:在数据科学的诸多曲线上进行现代之旅
点击右上角即可分享
微信分享提示