Python图像处理:频域滤波降噪和图像增强

图像处理已经成为我们日常生活中不可或缺的一部分,涉及到社交媒体和医学成像等各个领域。通过数码相机或卫星照片和医学扫描等其他来源获得的图像可能需要预处理以消除或增强噪声。频域滤波是一种可行的解决方案,它可以在增强图像锐化的同时消除噪声。

快速傅里叶变换(FFT)是一种将图像从空间域变换到频率域的数学技术,是图像处理中进行频率变换的关键工具。通过利用图像的频域表示,我们可以根据图像的频率内容有效地分析图像,从而简化滤波程序的应用以消除噪声。本文将讨论图像从FFT到逆FFT的频率变换所涉及的各个阶段,并结合FFT位移和逆FFT位移的使用。

本文使用了三个Python库,即openCV、Numpy和Matplotlib。

 

完整文章:

https://avoid.overfit.cn/post/8768ec2a60a0456eab327abc33146508

 

posted @ 2023-03-08 11:06  deephub  阅读(159)  评论(0编辑  收藏  举报