非参数检验方法,核密度估计简介
在20世纪,统计学还处于起步阶段计算机还不是那么流行的时候,假设正态分布是生成数据的标准。这主要是因为在那个所有结果都是手工计算的时代,正态分布可以使计算不那么繁琐。
但在这个大数据时代,随着计算能力的提高,数据的可用性使得统计学家采用了更现代的技术——非参数统计。这里我们将讨论一种这样的方法来估计概率分布,核密度估计。
完整文章
https://avoid.overfit.cn/post/6cea4b95969a404aa419e28b7676c807
在20世纪,统计学还处于起步阶段计算机还不是那么流行的时候,假设正态分布是生成数据的标准。这主要是因为在那个所有结果都是手工计算的时代,正态分布可以使计算不那么繁琐。
但在这个大数据时代,随着计算能力的提高,数据的可用性使得统计学家采用了更现代的技术——非参数统计。这里我们将讨论一种这样的方法来估计概率分布,核密度估计。
完整文章
https://avoid.overfit.cn/post/6cea4b95969a404aa419e28b7676c807
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· .NET10 - 预览版1新功能体验(一)
2022-02-28 深度特征合成与遗传特征生成,两种自动特征生成策略的比较