100行Pytorch代码实现三维重建技术神经辐射场 (NeRF)

提起三维重建技术,NeRF是一个绝对绕不过去的名字。这项逆天的技术,一经提出就被众多研究者所重视,对该技术进行深入研究并提出改进已经成为一个热点。不到两年的时间,NeRF及其变种已经成为重建领域的主流。本文通过100行的Pytorch代码实现最初的 NeRF 论文。

NeRF全称为Neural Radiance Fields(神经辐射场),是一项利用多目图像重建三维场景的技术。该项目的作者来自于加州大学伯克利分校,Google研究院,以及加州大学圣地亚哥分校。NeRF使用一组多目图作为输入,通过优化一个潜在连续的体素场景方程来得到一个完整的三维场景。该方法使用一个全连接深度网络来表示场景,使用的输入是一个单连通的5D坐标(空间位置x,y,z以及观察视角θ,),输出为一个体素场景,可以以任意视角查看,并通过体素渲染技术,生成需要视角的照片。该方法同样支持视频合成。

 

完整文章:

https://avoid.overfit.cn/post/3d89b7ed625b437993e3fde57f36c70a

 

posted @   deephub  阅读(347)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· .NET10 - 预览版1新功能体验(一)
历史上的今天:
2022-02-15 特征工程:常用的特征转换方法总结
点击右上角即可分享
微信分享提示