如何检测时间序列中的异方差(Heteroskedasticity)

时间序列中非恒定方差的检测与处理,如果一个时间序列的方差随时间变化,那么它就是异方差的。否则数据集是同方差的。

异方差性影响时间序列建模。因此检测和处理这种情况非常重要。

让我们从一个可视化的例子开始。

下面的图1显示了航空公司乘客的时间序列。可以看到在整个序列中变化是不同的。在该系列的后一部分方差更高。这也是数据水平跨度比前面的数据大。

 

https://avoid.overfit.cn/post/0be132e2b6b04a12b6c22f90853ea7be

posted @   deephub  阅读(272)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· .NET10 - 预览版1新功能体验(一)
历史上的今天:
2021-12-26 利用关联规则实现推荐算法
点击右上角即可分享
微信分享提示