Pandas中高效的选择和替换操作总结

作为数据科学家,使用正确的工具和技术来最大限度地利用数据是很重要的。Pandas是数据操作、分析和可视化的重要工具,有效地使用Pandas可能具有挑战性,从使用向量化操作到利用内置函数,这些最佳实践可以帮助数据科学家使用Pandas快速准确地分析和可视化数据。

在本文中,我们将重点介绍在DataFrame上经常执行的两个最常见的任务,特别是在数据科学项目的数据操作阶段。这两项任务是有效地选择特定的和随机的行和列,以及使用replace()函数使用列表和字典替换一个或多个值。

在本文中,我们将使用下面的数据集:

  • 扑克牌游戏数据集
  • 婴儿名字数据集

我们使用的第一个数据集是扑克牌游戏数据集,如下所示。

https://avoid.overfit.cn/post/2c0d17effb934e6da75c33e6402029c6

posted @   deephub  阅读(13)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· .NET10 - 预览版1新功能体验(一)
历史上的今天:
2021-12-21 2021 年顶级深度学习论文推荐
点击右上角即可分享
微信分享提示