图像数据的特征工程

一提到特征工程,我们立即想到是表格数据。但是我们也可以得到图像数据的特征,提取图像中最重要的方面。这样做可以更容易地找到数据和目标变量之间的映射。

这样可以使用更少的数据和训练更小的模型。更小的模型可以减少预测所需的时间。这在部署到边缘设备时特别有用。另一个好处是,可以更确定模型使用什么来进行这些预测。

本文将介绍使用Python进行图像特征工程的一些方法:

  • Cropping
  • Grayscalling
  • Selecting RGB channels
  • Intensity thresholds
  • Edge detection
  • Colour filters (给定的颜色范围内提取像素)

我们将在自动驾驶汽车上进行演示。如下图所示,轨道的图像训练一个模型。然后该模型将被用来做出预测,指导汽车行驶。本文的最后我们将讨论图像数据特征工程的局限性。

完整文章:

https://avoid.overfit.cn/post/bd8d9a344381437d92d8b2f714359332

posted @   deephub  阅读(33)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· .NET10 - 预览版1新功能体验(一)
点击右上角即可分享
微信分享提示