从头开始进行CUDA编程:流和事件

流 (Streams)

当我们启动内核(函数)时,它会在 GPU 中排队等待执行,GPU 会顺序按照启动时间执行我们的内核。设备中启动的许多任务可能依赖于之前的任务,所以“将它们放在同一个队列中”是有道理的。例如,如果将数据异步复制到 GPU 以使用某个内核处理它,则复制的步骤本必须在内核运行之前完成。

但是如果有两个相互独立的内核,将它们放在同一个队列中有意义吗?不一定!因为对于这种情况,CUDA通过流的机制来进行处理。我们可以将流视为独立的队列,它们彼此独立运行,也可以同时运行。这样在运行许多独立任务时,这可以大大加快总运行时间。

 

完整文章:

https://avoid.overfit.cn/post/fd3454303b9b4a7e8a2898b7d24b41ec

posted @ 2022-11-23 10:37  deephub  阅读(47)  评论(0编辑  收藏  举报