特征选择技术总结

在本文中,我们将回顾特性选择技术并回答为什么它很重要以及如何使用python实现它。

本文还可以帮助你解答以下的面试问题:

  • 什么是特征选择?
  • 说出特性选择的一些好处
  • 你知道哪些特征选择技巧?
  • 区分单变量、双变量和多变量分析。
  • 我们能用PCA来进行特征选择吗?
  • 前向特征选择和后向特征选择的区别是什么?

什么是特征选择,为什么它很重要?

特性选择是选择与ML模型更加一致、非冗余和更相关的基本特性的过程。在ML项目中使用特性选择是必要的,因为:

  • 它有助于减少数据集的大小和复杂性,并且可以使用更少的时间来训练模型及进行推理;
  • 具有较少特征的简单机器学习模型更容易理解和解释;
  • 它可以避免过度拟合。更多特征使模型变得更加复杂,并带来维度灾难(误差随着特征数量的增加而增加)。

完整文章

https://avoid.overfit.cn/post/6f2a58732ffa42ba8dffa6db78c5ebc0

posted @ 2022-11-21 12:25  deephub  阅读(34)  评论(0编辑  收藏  举报