经典CNN设计演变的关键总结:从VGGNet到EfficientNet
卷积神经网络设计史上的主要里程碑:模块化、多路径、因式分解、压缩、可扩展
一般来说,分类问题是计算机视觉模型的基础,它可以延申解决更复杂的视觉问题,例如:目标检测的任务包括检测边界框并对其中的对象进行分类。而分割的任务则是对图像中的每个像素进行分类。
卷积神经网络(CNNs)首次被用于解决图像分类问题,并且取得了很好的效果,所以在这个问题上,研究人员开始展开竞争。通过对ImageNet Challenge中更精确分类器的快速跟踪研究,他们解决了与大容量神经网络的统计学习相关的更普遍的问题,导致了深度学习的重大进展。
在本文中我们将整理一些经典的CNN模型,详细介绍这些模型的设计理论和关键设计点:
https://avoid.overfit.cn/post/7f9e04b064324bb0be9868cd34ace7de
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· .NET10 - 预览版1新功能体验(一)