时间序列分析中的自相关
什么是自相关以及为什么它在时间序列分析中是有用的。
在时间序列分析中,我们经常通过对过去的理解来预测未来。为了使这个过程成功,我们必须彻底了解我们的时间序列,找到这个时间序列中包含的信息。
自相关就是其中一种分析的方法,他可以检测时间系列中的某些特征,为我们的数据选择最优的预测模型。
在这篇简短的文章中,我想回顾一下:什么是自相关,为什么它是有用的,并介绍如何将它应用到Python中的一个简单数据集。
完整文章:
https://avoid.overfit.cn/post/a8c4b5c43e65431dbf026d4f9dd5e1ca
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· .NET10 - 预览版1新功能体验(一)