时间序列分析中的自相关

什么是自相关以及为什么它在时间序列分析中是有用的。

在时间序列分析中,我们经常通过对过去的理解来预测未来。为了使这个过程成功,我们必须彻底了解我们的时间序列,找到这个时间序列中包含的信息。

自相关就是其中一种分析的方法,他可以检测时间系列中的某些特征,为我们的数据选择最优的预测模型。

在这篇简短的文章中,我想回顾一下:什么是自相关,为什么它是有用的,并介绍如何将它应用到Python中的一个简单数据集。

完整文章:

https://avoid.overfit.cn/post/a8c4b5c43e65431dbf026d4f9dd5e1ca

posted @   deephub  阅读(79)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· .NET10 - 预览版1新功能体验(一)
点击右上角即可分享
微信分享提示