Pytorch创建多任务学习模型

在机器学习中,我们通常致力于针对单个任务,也就是优化单个指标。但是多任务学习(MTL)在机器学习的许多应用中都取得了成功,从自然语言处理和语音识别到计算机视觉和药物发现。

MTL最著名的例子可能是特斯拉的自动驾驶系统。在自动驾驶中需要同时处理大量任务,如物体检测、深度估计、3D重建、视频分析、跟踪等,你可能认为需要10个以上的深度学习模型,但事实并非如此。

HydraNet介绍

一般来说多任务学的模型架构非常简单:一个骨干网络作为特征的提取,然后针对不同的任务创建多个头。利用单一模型解决多个任务。

上图可以看到,特征提取模型提取图像特征。输出最后被分割成多个头,每个头负责一个特定的情况,由于它们彼此独立可以单独进行微调!

完整文章:

https://avoid.overfit.cn/post/57d4e8712c634fe887247ce66e694f8f

posted @   deephub  阅读(191)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· .NET10 - 预览版1新功能体验(一)
点击右上角即可分享
微信分享提示